Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dimers of glutaredoxin 2 as mitochondrial redox sensors in selenite-induced oxidative stress.

Identifieur interne : 000176 ( Main/Exploration ); précédent : 000175; suivant : 000177

Dimers of glutaredoxin 2 as mitochondrial redox sensors in selenite-induced oxidative stress.

Auteurs : Valeria Scalcon [Italie] ; Federica Tonolo [Italie] ; Alessandra Folda [Italie] ; Alberto Bindoli [Italie] ; Maria Pia Rigobello [Italie]

Source :

RBID : pubmed:31168542

Descripteurs français

English descriptors

Abstract

Glutaredoxin 2 (Grx2) has been previously shown to link thioredoxin and glutathione systems receiving reducing equivalents by both thioredoxin reductase and glutathione. Grx2 catalyzes protein glutathionylation/de-glutathionylation and can coordinate an iron-sulfur cluster, forming inactive dimers stabilized by two molecules of glutathione. This protein is mainly located in the mitochondrial matrix, though other isoforms have been found in the cytosolic and nuclear cell compartments. In the present study, we have analyzed the monomeric and dimeric states of Grx2 under different redox conditions in HeLa cells, and sodium selenite was utilized as the principal oxidizing agent. After selenite treatment, an increased glutathione oxidation was associated to Grx2 monomerization and activation, specifically in the mitochondrial compartment. Interestingly, in mitochondria, a large decline of thioredoxin reductase activity was also observed concomitantly to Grx2 activity stimulation. In addition, Grx2 monomerization led to an increase free iron ions concentration in the mitochondrial matrix, induction of lipid peroxidation and decrease of the mitochondrial membrane potential, indicating that the disassembly of Grx2 dimer involved the release of the iron-sulfur cluster in the mitochondrial matrix. Moreover, sodium selenite-triggered lipid and protein oxidation was partially prevented by deferiprone, an iron chelator with mitochondriotropic properties, suggesting a role of the iron-sulfur cluster release in the observed impairment of mitochondrial functions. Thus, by sensing the overall cellular redox conditions, mitochondrial Grx2 dimers become active monomers upon oxidative stress induced by sodium selenite with the consequent release of the iron-sulfur cluster, leading to activation of the intrinsic apoptotic pathway.

DOI: 10.1039/c9mt00090a
PubMed: 31168542


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dimers of glutaredoxin 2 as mitochondrial redox sensors in selenite-induced oxidative stress.</title>
<author>
<name sortKey="Scalcon, Valeria" sort="Scalcon, Valeria" uniqKey="Scalcon V" first="Valeria" last="Scalcon">Valeria Scalcon</name>
<affiliation wicri:level="4">
<nlm:affiliation>Dipartimento di Scienze Biomediche, Università degli Studi di Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy. mariapia.rigobello@unipd.it.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Scienze Biomediche, Università degli Studi di Padova, Via Ugo Bassi 58/b, 35131 Padova</wicri:regionArea>
<orgName type="university">Université de Padoue</orgName>
<placeName>
<settlement type="city">Padoue</settlement>
<region type="region" nuts="2">Vénétie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tonolo, Federica" sort="Tonolo, Federica" uniqKey="Tonolo F" first="Federica" last="Tonolo">Federica Tonolo</name>
<affiliation wicri:level="4">
<nlm:affiliation>Dipartimento di Scienze Biomediche, Università degli Studi di Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy. mariapia.rigobello@unipd.it.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Scienze Biomediche, Università degli Studi di Padova, Via Ugo Bassi 58/b, 35131 Padova</wicri:regionArea>
<orgName type="university">Université de Padoue</orgName>
<placeName>
<settlement type="city">Padoue</settlement>
<region type="region" nuts="2">Vénétie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Folda, Alessandra" sort="Folda, Alessandra" uniqKey="Folda A" first="Alessandra" last="Folda">Alessandra Folda</name>
<affiliation wicri:level="4">
<nlm:affiliation>Dipartimento di Scienze Biomediche, Università degli Studi di Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy. mariapia.rigobello@unipd.it.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Scienze Biomediche, Università degli Studi di Padova, Via Ugo Bassi 58/b, 35131 Padova</wicri:regionArea>
<orgName type="university">Université de Padoue</orgName>
<placeName>
<settlement type="city">Padoue</settlement>
<region type="region" nuts="2">Vénétie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bindoli, Alberto" sort="Bindoli, Alberto" uniqKey="Bindoli A" first="Alberto" last="Bindoli">Alberto Bindoli</name>
<affiliation wicri:level="1">
<nlm:affiliation>Istituto di Neuroscienze (CNR), Sezione di Padova, c/o Dipartimento di Scienze Biomediche, Viale G. Colombo 3, 35131 Padova, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Istituto di Neuroscienze (CNR), Sezione di Padova, c/o Dipartimento di Scienze Biomediche, Viale G. Colombo 3, 35131 Padova</wicri:regionArea>
<wicri:noRegion>35131 Padova</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rigobello, Maria Pia" sort="Rigobello, Maria Pia" uniqKey="Rigobello M" first="Maria Pia" last="Rigobello">Maria Pia Rigobello</name>
<affiliation wicri:level="4">
<nlm:affiliation>Dipartimento di Scienze Biomediche, Università degli Studi di Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy. mariapia.rigobello@unipd.it.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Scienze Biomediche, Università degli Studi di Padova, Via Ugo Bassi 58/b, 35131 Padova</wicri:regionArea>
<orgName type="university">Université de Padoue</orgName>
<placeName>
<settlement type="city">Padoue</settlement>
<region type="region" nuts="2">Vénétie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31168542</idno>
<idno type="pmid">31168542</idno>
<idno type="doi">10.1039/c9mt00090a</idno>
<idno type="wicri:Area/Main/Corpus">000139</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000139</idno>
<idno type="wicri:Area/Main/Curation">000139</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000139</idno>
<idno type="wicri:Area/Main/Exploration">000139</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Dimers of glutaredoxin 2 as mitochondrial redox sensors in selenite-induced oxidative stress.</title>
<author>
<name sortKey="Scalcon, Valeria" sort="Scalcon, Valeria" uniqKey="Scalcon V" first="Valeria" last="Scalcon">Valeria Scalcon</name>
<affiliation wicri:level="4">
<nlm:affiliation>Dipartimento di Scienze Biomediche, Università degli Studi di Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy. mariapia.rigobello@unipd.it.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Scienze Biomediche, Università degli Studi di Padova, Via Ugo Bassi 58/b, 35131 Padova</wicri:regionArea>
<orgName type="university">Université de Padoue</orgName>
<placeName>
<settlement type="city">Padoue</settlement>
<region type="region" nuts="2">Vénétie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tonolo, Federica" sort="Tonolo, Federica" uniqKey="Tonolo F" first="Federica" last="Tonolo">Federica Tonolo</name>
<affiliation wicri:level="4">
<nlm:affiliation>Dipartimento di Scienze Biomediche, Università degli Studi di Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy. mariapia.rigobello@unipd.it.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Scienze Biomediche, Università degli Studi di Padova, Via Ugo Bassi 58/b, 35131 Padova</wicri:regionArea>
<orgName type="university">Université de Padoue</orgName>
<placeName>
<settlement type="city">Padoue</settlement>
<region type="region" nuts="2">Vénétie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Folda, Alessandra" sort="Folda, Alessandra" uniqKey="Folda A" first="Alessandra" last="Folda">Alessandra Folda</name>
<affiliation wicri:level="4">
<nlm:affiliation>Dipartimento di Scienze Biomediche, Università degli Studi di Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy. mariapia.rigobello@unipd.it.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Scienze Biomediche, Università degli Studi di Padova, Via Ugo Bassi 58/b, 35131 Padova</wicri:regionArea>
<orgName type="university">Université de Padoue</orgName>
<placeName>
<settlement type="city">Padoue</settlement>
<region type="region" nuts="2">Vénétie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bindoli, Alberto" sort="Bindoli, Alberto" uniqKey="Bindoli A" first="Alberto" last="Bindoli">Alberto Bindoli</name>
<affiliation wicri:level="1">
<nlm:affiliation>Istituto di Neuroscienze (CNR), Sezione di Padova, c/o Dipartimento di Scienze Biomediche, Viale G. Colombo 3, 35131 Padova, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Istituto di Neuroscienze (CNR), Sezione di Padova, c/o Dipartimento di Scienze Biomediche, Viale G. Colombo 3, 35131 Padova</wicri:regionArea>
<wicri:noRegion>35131 Padova</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rigobello, Maria Pia" sort="Rigobello, Maria Pia" uniqKey="Rigobello M" first="Maria Pia" last="Rigobello">Maria Pia Rigobello</name>
<affiliation wicri:level="4">
<nlm:affiliation>Dipartimento di Scienze Biomediche, Università degli Studi di Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy. mariapia.rigobello@unipd.it.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimento di Scienze Biomediche, Università degli Studi di Padova, Via Ugo Bassi 58/b, 35131 Padova</wicri:regionArea>
<orgName type="university">Université de Padoue</orgName>
<placeName>
<settlement type="city">Padoue</settlement>
<region type="region" nuts="2">Vénétie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Metallomics : integrated biometal science</title>
<idno type="eISSN">1756-591X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Apoptosis (MeSH)</term>
<term>Glutaredoxins (analysis)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (metabolism)</term>
<term>HeLa Cells (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Iron (metabolism)</term>
<term>Mitochondria (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Protein Multimerization (MeSH)</term>
<term>Selenious Acid (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide sélénieux (métabolisme)</term>
<term>Apoptose (MeSH)</term>
<term>Cellules HeLa (MeSH)</term>
<term>Fer (métabolisme)</term>
<term>Glutarédoxines (analyse)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Mitochondries (métabolisme)</term>
<term>Multimérisation de protéines (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Stress oxydatif (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Iron</term>
<term>Selenious Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Glutarédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mitochondria</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide sélénieux</term>
<term>Fer</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Mitochondries</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Apoptosis</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Oxidation-Reduction</term>
<term>Oxidative Stress</term>
<term>Protein Multimerization</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Apoptose</term>
<term>Cellules HeLa</term>
<term>Humains</term>
<term>Multimérisation de protéines</term>
<term>Oxydoréduction</term>
<term>Stress oxydatif</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glutaredoxin 2 (Grx2) has been previously shown to link thioredoxin and glutathione systems receiving reducing equivalents by both thioredoxin reductase and glutathione. Grx2 catalyzes protein glutathionylation/de-glutathionylation and can coordinate an iron-sulfur cluster, forming inactive dimers stabilized by two molecules of glutathione. This protein is mainly located in the mitochondrial matrix, though other isoforms have been found in the cytosolic and nuclear cell compartments. In the present study, we have analyzed the monomeric and dimeric states of Grx2 under different redox conditions in HeLa cells, and sodium selenite was utilized as the principal oxidizing agent. After selenite treatment, an increased glutathione oxidation was associated to Grx2 monomerization and activation, specifically in the mitochondrial compartment. Interestingly, in mitochondria, a large decline of thioredoxin reductase activity was also observed concomitantly to Grx2 activity stimulation. In addition, Grx2 monomerization led to an increase free iron ions concentration in the mitochondrial matrix, induction of lipid peroxidation and decrease of the mitochondrial membrane potential, indicating that the disassembly of Grx2 dimer involved the release of the iron-sulfur cluster in the mitochondrial matrix. Moreover, sodium selenite-triggered lipid and protein oxidation was partially prevented by deferiprone, an iron chelator with mitochondriotropic properties, suggesting a role of the iron-sulfur cluster release in the observed impairment of mitochondrial functions. Thus, by sensing the overall cellular redox conditions, mitochondrial Grx2 dimers become active monomers upon oxidative stress induced by sodium selenite with the consequent release of the iron-sulfur cluster, leading to activation of the intrinsic apoptotic pathway.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31168542</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>05</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1756-591X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2019</Year>
<Month>07</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>Metallomics : integrated biometal science</Title>
<ISOAbbreviation>Metallomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Dimers of glutaredoxin 2 as mitochondrial redox sensors in selenite-induced oxidative stress.</ArticleTitle>
<Pagination>
<MedlinePgn>1241-1251</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1039/c9mt00090a</ELocationID>
<Abstract>
<AbstractText>Glutaredoxin 2 (Grx2) has been previously shown to link thioredoxin and glutathione systems receiving reducing equivalents by both thioredoxin reductase and glutathione. Grx2 catalyzes protein glutathionylation/de-glutathionylation and can coordinate an iron-sulfur cluster, forming inactive dimers stabilized by two molecules of glutathione. This protein is mainly located in the mitochondrial matrix, though other isoforms have been found in the cytosolic and nuclear cell compartments. In the present study, we have analyzed the monomeric and dimeric states of Grx2 under different redox conditions in HeLa cells, and sodium selenite was utilized as the principal oxidizing agent. After selenite treatment, an increased glutathione oxidation was associated to Grx2 monomerization and activation, specifically in the mitochondrial compartment. Interestingly, in mitochondria, a large decline of thioredoxin reductase activity was also observed concomitantly to Grx2 activity stimulation. In addition, Grx2 monomerization led to an increase free iron ions concentration in the mitochondrial matrix, induction of lipid peroxidation and decrease of the mitochondrial membrane potential, indicating that the disassembly of Grx2 dimer involved the release of the iron-sulfur cluster in the mitochondrial matrix. Moreover, sodium selenite-triggered lipid and protein oxidation was partially prevented by deferiprone, an iron chelator with mitochondriotropic properties, suggesting a role of the iron-sulfur cluster release in the observed impairment of mitochondrial functions. Thus, by sensing the overall cellular redox conditions, mitochondrial Grx2 dimers become active monomers upon oxidative stress induced by sodium selenite with the consequent release of the iron-sulfur cluster, leading to activation of the intrinsic apoptotic pathway.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Scalcon</LastName>
<ForeName>Valeria</ForeName>
<Initials>V</Initials>
<Identifier Source="ORCID">0000-0002-7061-6471</Identifier>
<AffiliationInfo>
<Affiliation>Dipartimento di Scienze Biomediche, Università degli Studi di Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy. mariapia.rigobello@unipd.it.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tonolo</LastName>
<ForeName>Federica</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Dipartimento di Scienze Biomediche, Università degli Studi di Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy. mariapia.rigobello@unipd.it.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Folda</LastName>
<ForeName>Alessandra</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Dipartimento di Scienze Biomediche, Università degli Studi di Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy. mariapia.rigobello@unipd.it.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bindoli</LastName>
<ForeName>Alberto</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Istituto di Neuroscienze (CNR), Sezione di Padova, c/o Dipartimento di Scienze Biomediche, Viale G. Colombo 3, 35131 Padova, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rigobello</LastName>
<ForeName>Maria Pia</ForeName>
<Initials>MP</Initials>
<Identifier Source="ORCID">0000-0003-2586-3251</Identifier>
<AffiliationInfo>
<Affiliation>Dipartimento di Scienze Biomediche, Università degli Studi di Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy. mariapia.rigobello@unipd.it.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Metallomics</MedlineTA>
<NlmUniqueID>101478346</NlmUniqueID>
<ISSNLinking>1756-5901</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>F6A27P4Q4R</RegistryNumber>
<NameOfSubstance UI="D020887">Selenious Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017209" MajorTopicYN="N">Apoptosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006367" MajorTopicYN="N">HeLa Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="Y">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="Y">Protein Multimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020887" MajorTopicYN="N">Selenious Acid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>6</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>6</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31168542</ArticleId>
<ArticleId IdType="doi">10.1039/c9mt00090a</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
<region>
<li>Vénétie</li>
</region>
<settlement>
<li>Padoue</li>
</settlement>
<orgName>
<li>Université de Padoue</li>
</orgName>
</list>
<tree>
<country name="Italie">
<region name="Vénétie">
<name sortKey="Scalcon, Valeria" sort="Scalcon, Valeria" uniqKey="Scalcon V" first="Valeria" last="Scalcon">Valeria Scalcon</name>
</region>
<name sortKey="Bindoli, Alberto" sort="Bindoli, Alberto" uniqKey="Bindoli A" first="Alberto" last="Bindoli">Alberto Bindoli</name>
<name sortKey="Folda, Alessandra" sort="Folda, Alessandra" uniqKey="Folda A" first="Alessandra" last="Folda">Alessandra Folda</name>
<name sortKey="Rigobello, Maria Pia" sort="Rigobello, Maria Pia" uniqKey="Rigobello M" first="Maria Pia" last="Rigobello">Maria Pia Rigobello</name>
<name sortKey="Tonolo, Federica" sort="Tonolo, Federica" uniqKey="Tonolo F" first="Federica" last="Tonolo">Federica Tonolo</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000176 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000176 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31168542
   |texte=   Dimers of glutaredoxin 2 as mitochondrial redox sensors in selenite-induced oxidative stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31168542" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020